ANALISIS DETERMINAN PERTUMBUHAN EKONOMI DENGAN PENDEKATAN ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM (ANFIS)

Yulius Eka Agung Seputra, Meirinaldi Meirinaldi

Abstract


This research is an application to realize a system that capable of providing data and information
between levels of economic growth and Indonesian’s Export between 2010-2020. Data from the
system that created dug deeper to find out the prediction of drug distribution in the future.
The system to be built is the system that is able to predict the level of export needs that will
happen in time (month/year) that you want based on the data of time (month/year) using ANFIS
system. The ANFIS system will search the best function to predict the export needs in year 2010.
Furthermore, the output is used as the data in 2010. The data output as prediction will be
matched with actual data, whether the resulting function of ANFIS system has a small error. If
so, then the function obtained is optimal.


Keyword: Time Series Prediction, neural network, ANFIS.


Full Text:

PDF

References


Setiawan dan Kusrini, Dwi Endah, 2010. EKONOMETRIKA. Yogyakarta: Andi. Sadik,

Jakfar, 2013.

Modul Pengantar Ekonomi Makro. Universitas Trunojoyo Madura.

http://edisugiartonos.blogspot.com/makalah-pertumbuhan-ekonomi.html diakses pada

November 2012

http://antoniusgunadarma.blogspot.com/pengaruh-investasi-terhadap-pertumbuhan.html

diakses pada April 2012.

http://pumariksa.blogspot.com/v-behaviorurldefaultvmlo.html diakses pada Maret 2013

http://jurnalekis.blogspot.com/korelasi-antara-perdagangan.html diakses pada Maret 2011

http://repository.unand.ac.id/8536/

http://lppm.ut.ac.id/pdffiles/02_JOM_Adrian_Pengaruh_Ekspor_dan_Investasi.pdf

Jang, J.-S. R. 1993. ANFIS: Adaptive-network- based fuzzy inference systems, IEEE Trans.

On Systems, Man and Cybernetics, 23(03):665-685.

Jang, J.-S. R. 1997. Neuro-Fuzzy and Soft Computing . NewJersey Prentice-Hall. [2] Jang,

J.-S. R. 1997. Neuro-Fuzzy and Soft Computing. NewJersey Prentice-Hall.

Gorzalczany M. B., A. Gluszek. 2000. Neuro- fuzzy systems for rule-based modeling of

dynamic processes.Proceedings of ESIT 2000, pp. 416-422.

Fariza Arna. M.Kom., “Tesis Hybrid Algorithma Genetika Simulated Annealing untuk

peramalan Data Time series” Program Pasca Sarjana Institut Teknologi Sepuluh Nopember

Surabaya, Juli 2003.

G. Atsalakis, Ucenic “Time series prediction of water consumption using neuro-fuzzy

(ANFIS) approach”.

Makridakis, S., S. Wheelwright., dan V. E. McGee. 1999. Metode dan Aplikasi Peramalan.

Edisi kedua. Jilit satu. Jakarta: Binarupa Aksara.




DOI: https://doi.org/10.37721/je.v23i3.874

Refbacks

  • There are currently no refbacks.